Multiple QTL for Horticultural Traits and Quantitative Resistance to Phytophthora infestans Linked on Solanum habrochaites Chromosome 11
نویسندگان
چکیده
Previously, a Phytophthora infestans resistance QTL from Solanum habrochaites chromosome 11 was introgressed into cultivated tomato (S. lycopersicum). Fine mapping of this resistance QTL using near-isogenic lines (NILs) revealed some co-located QTL with undesirable effects on plant size, canopy density, and fruit size traits. Subsequently, higher-resolution mapping with sub-NILs detected multiple P. infestans resistance QTL within this 9.4-cM region of chromosome 11. In our present study, these same sub-NILs were also evaluated for 17 horticultural traits, including yield, maturity, fruit size and shape, fruit quality, and plant architecture traits in replicated field experiments over 2 years. The horticultural trait QTL originally detected by fine mapping each fractionated into two or more QTL at higher resolution. A total of 34 QTL were detected across all traits, with 14% exhibiting significant QTL × environment interactions (QTL × E). QTL for many traits were co-located, suggesting either pleiotropic effects or tight linkage among genes controlling these traits. Recombination in the pericentromeric region of the introgression between markers TG147 and At4g10050 was suppressed to approximately 29.7 Mbp per cM, relative to the genomewide average of 750 kbp per cM. The genetic architecture of many of the horticultural and P. infestans resistance traits that mapped within this chromosome 11 S. habrochaites region is complex. Complicating factors included fractionation of QTL, pleiotropy or tight linkage of QTL for multiple traits, pericentromeric chromosomal location(s), and/or QTL × E. High-resolution mapping of QTL in this region would be needed to determine which specific target QTL could be useful in breeding cultivated tomato.
منابع مشابه
Linkage Relationships Among Multiple QTL for Horticultural Traits and Late Blight (P. infestans) Resistance on Chromosome 5 Introgressed from Wild Tomato Solanum habrochaites
When the allele of a wild species at a quantitative trait locus (QTL) conferring a desirable trait is introduced into cultivated species, undesirable effects on other traits may occur. These negative phenotypic effects may result from the presence of wild alleles at other closely linked loci that are transferred along with the desired QTL allele (i.e., linkage drag) and/or from pleiotropic effe...
متن کاملFractionation, Stability, and Isolate-Specificity of QTL for Resistance to Phytophthora infestans in Cultivated Tomato (Solanum lycopersicum)
Cultivated tomato (Solanum lycopersicum) is susceptible to late blight, a major disease caused by Phytophthora infestans, but quantitative resistance exists in the wild tomato species S. habrochaites. Previously, we mapped several quantitative trait loci (QTL) from S. habrochaites and then introgressed each individually into S. lycopersicum. Near-isogenic lines (NILs) were developed, each conta...
متن کاملQuantitative resistance to Phytophthora infestans in potato: a case study for QTL mapping in an allogamous plant species.
Phytophthora infestans is the most important fungal pathogen in the cultivated potato (Solanum tuberosum). Dominant, race-specific resistance alleles and quantitative resistance--the latter being more important for potato breeding--are found in the germplasm of cultivated and wild potato species. Quantitative trait loci (QTLs) for resistance to two races of P. infestans have been mapped in an F...
متن کاملGenetic Linkage Mapping of Economically Important Traits in Cultivated Tetraploid Potato (Solanum tuberosum L.)
The objective of this study was to construct a single nucleotide polymorphism (SNP)-based genetic map at the cultivated tetraploid level to locate quantitative trait loci (QTL) contributing to economically important traits in potato (Solanum tuberosum L.). The 156 F1 progeny and parents of a cross (MSL603) between "Jacqueline Lee" and "MSG227-2" were genotyped using the Infinium 8303 Potato Arr...
متن کاملCurrent Status of Early Blight Resistance in Tomato: An Update
Early blight (EB) is one of the dreadful diseases of tomato caused by several species of Alternaria including Alternaria linariae (which includes A. solani and A. tomatophila), as well as A. alternata. In some instances, annual economic yield losses due to EB have been estimated at 79%. Alternaria are known only to reproduce asexually, but a highly-virulent isolate has the potential to overcome...
متن کامل